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1. Introduction. In this paper we investigate the problem of min-
imising, over all functions f : {1, . . . , N} → R with

∑
x f(x) = N , the

quantity

M(f) =
∑
a,b,c,d

a+b=c+d

f(a)f(b)f(c)f(d).

We obtain a non-trivial lower bound for M(f) using techniques from Fourier
analysis. We then demonstrate the relevance of this bound to upper bounds
for Bh[g] sets. Recall that A ⊆ {1, . . . , N} is a Bh[g]-set if the number of
representations of any x as a1+ · · ·+ah (with ai ∈ A) is at most g, where we
consider two such representations to be the same if they differ only in the
ordering of the summands. Letting A(h, g,N) denote the size of the largest
Bh[g] set that one may pick from {1, . . . , N}, we prove that

A(3, 1, N) ≤ (7
2
)1/3N1/3(1 + o(1))

and that
A(4, 1, N) ≤ 71/4N1/4(1 + o(1)).

Both of these improve on the current best-known bounds. We then obtain
new bounds for A(h, 1, N) when h is large. In the final part of the paper
we turn our attention to bounds for A(2, g, N). Using an idea from a recent
paper of Cilleruelo, Ruzsa and Trujillo [3] in combination with our own
approach, we improve on the best-known bounds.

2. Fourier analysis on ZN . We shall make substantial use of Fourier
analysis. Our notation follows [5], but for the convenience of the reader we
take this opportunity to give a swift introduction.

Let N be a fixed positive integer, and write ZN for the cyclic group with
N elements. Let ω denote the complex number e2πi/N . Although ω clearly
depends on N , we shall not indicate this dependence in the rest of the paper,
trusting that the value of N is clear from context. Let f : ZN → C be any
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function. Then for r ∈ ZN we define the Fourier transform

f̂(r) =
∑
x∈ZN

f(x)ωrx.

We shall repeatedly use two important properties of the Fourier transform.
The first is Parseval’s identity, which states that if f : ZN → C and g :
ZN → C are two functions then

N
∑
x∈ZN

f(x)g(x) =
∑
r∈ZN

f̂(r)ĝ(r).

The second is the interaction of convolutions with the Fourier transform.
If f, g : G → C are two functions on an abelian group G we define the
convolution

(f ∗ g)(x) =
∑
y∈G

f(y)g(y − x).

A key fact, which we shall use without further comment, is that

(f ∗ g)̂ (r) = f̂(r)ĝ(r).

The reader will note that this is a rather non-standard definition and, in
particular, that the operation we have defined is not associative. There are
some situations in which it would be very tedious to indicate the intended
bracketing of terms. Therefore we shall adopt the convention that

f1 ∗ f2 ∗ · · · ∗ fk = (((f1 ∗ f2) ∗ f3) · · · ∗ fk) .

Take, for example, sets Aj (j = 1, 2, 3) and identify them with their char-
acteristic functions. Then (A1 ∗A2 ∗A3)(x) is simply the number of triples
(a1, a2, a3) ∈ A1 × A2 × A3 with a1 − a2 + a3 = x. We will often use the
∗ notation in contexts similar to this, and the practice of identifying a set
with its characteristic function will also feature repeatedly in what follows.

If f : G → C is a function then very occasionally we will write f ◦ for the
function defined by f ◦(x) = f(−x). Observe that (A1∗A◦2)(x) is the number
of pairs (a1, a2) ∈ A1 × A2 with a1 + a2 = x.

One more piece of notation: throughout this paper we use O-notation for
quantities varying with N , so that (for example) X = o(1) means that
X → 0 as N →∞.

3. Bh[g] sets. This section is a summary of the results known about
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Bh[g] sets up to March 2000. Other accounts may be found in [3], [6], [8]
and [14].

From now on we denote by A(h, g,N) the size of the largest Bh[g]-set con-
tained in {1, . . . , N}, and write A(h, 1, N) = A(h,N) for short.

An early paper in this area was that of Erdős and Turán [4] in 1941, which
is nicely exposited in [9]. This paper dealt with the problem of B2[1]-sets,
which are also known as B2- or Sidon Sets. The bound

(1) A(2, N) ≤ N1/2 +N1/4 + 1

can be obtained from their argument. Together with a slightly earlier
result of Singer, which demonstrates the existence of B2-sets with |A| =
N1/2(1 + o(1)), this provides an asymptotically correct bound for A(2, N).
The question of the best possible error term is an extremely interesting one,
not least because no-one has managed so much as to improve the constant
attached to the N1/4 in (1). It has often been conjectured that the correct
error term is O(N ε).

The situation for all other values of h and g is rather different, and in fact
the correct asymptotics have not been obtained in any case. By way of
lower bounds Bose and Chowla showed that A(h,N) ≥ N1/h(1 + o(1)), and
in a recent preprint Cilleruelo, Ruzsa and Trujillo [3] obtained good lower
bounds for A(2, g, N) with g > 1.

Turning to upper bounds, a fairly simple counting argument shows that

(2) A(h, g,N) ≤ (gh · h!)1/hN1/h.

We call this the trivial bound, and for the reader’s convenience we sketch
now the case h = 2. Let A ⊆ {1, . . . , N} be a B2[g]-set. Observe that if
x = a1 + a2 with ai ∈ A then 1 ≤ x ≤ 2N . Hence by double counting
ordered pairs (a1, a2) ∈ A2 we find that |A|2 ≤ 2g · 2N , which translates
into the trivial bound in this case, namely

(3) A(2, g, N) ≤ (4g)1/2N1/2.

These results show that A(h, g,N) has order of magnitude N1/h, so it makes
sense to define

α(h, g) = lim sup
N→∞

N−1/hA(h, g,N)

for all h ≥ 2 and g ≥ 1. We write α(h) = α(h, 1). The trivial bound and
the Bose-Chowla theorem combine to give, in this notation,

1 ≤ α(h, g) ≤ (gh · h!)1/h
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and the results of Erdős – Turán and Singer show that α(2) = 1.

Until recently the trivial bound had not been improved for any pair (h, g)
with g > 1. However Cilleruelo, Ruzsa and Trujillo [3] show that

(4) α(2, g) ≤ 2π + 4√
π2 + 4π + 8

g1/2.

The constant appearing here is about 1.864. For g = 2 Cilleruelo [2] and
Helm have independently given the bound

(5) α(2, 2) ≤
√

6.

Cilleruelo’s proof is simple and combinatorial, but only generalises to give

α(2, g) ≤
√

4g − 2,

a slight improvement on (3). In §8 we offer our own improvement to the up-
per bound (3). This improves previously known results for g ≤ 68. Finally
in §9 we combine some of our ideas with some of the ideas in [3] to improve
the bound (4) for all g.

In the case g = 1 the situation is slightly better. Here the technique of
Erdős and Turán, which gave the value of α(2), has a natural generalisation
which gives a non-trivial upper bound for α(h). The first result of this kind
was obtained by Lindström [12] in 1969. He showed that

(6) α(4) ≤ 81/4.

Generalising his technique, Jia [10] obtained the bound

(7) α(2k) ≤
(
k(k!)2

)1/2k
.

A modification of this approach gives a corresponding bound for odd values
of h. Indeed the bound

(8) α(2k − 1) ≤ (k!)2/(2k−1)

was obtained independently by Chen [1] and Graham [6]. We conclude
this introduction by mentioning two further results. The first is the paper
of Kolountzakis [11], in which the bound (7) is obtained by an interesting
Fourier technique. We believe that this proof and that of Jia are morally the
same, but the new perspective is interesting. Secondly it is worth remarking
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that Graham [6] obtained a slight improvement on (8) in the case k = 2.
He proved that

(9) α(3) ≤
(
4− 1

228

)1/3
.

The argument is long and combinatorial.

4. Bounds for B4 sets – the first part of the argument. In this
section we begin our treatment of B4 sets. It is hoped that, after reading
this section, the reader will have a good idea of the direction in which we
are headed.

Like all previous approaches, our attack takes as motivation the original
argument of Erdős and Turán from 1941 [4]. We now give this argument in
the form that we use to get our generalisation. We leave it as a (slightly
non-trivial) exercise for the reader to check that our argument and that of
[4] are really the same.

Theorem 1 (Erdős – Turán) For all N we have the bound

A(2, N) ≤ N1/2 +N1/4 + 1.

P r o o f. Let A ⊆ {1, . . . , N} be a B2-set. It is easy to check that we
must have A ∗ A(x) ≤ 1 for all x 6= 0. Let u be a positive integer to be
chosen later, and regard A as a subset of ZN+u. It is no longer the case that
the modular version of A ∗ A satisfies A ∗ A(x) ≤ 1 for all x, but it is true
that A ∗ A(x) ≤ 1 for 0 < |x| ≤ u. Let I be the characteristic function of
{1, . . . , u}, and write

E =
∑

x∈ZN+u

A ∗ A(x)I ∗ I(x).

We count E in two ways. Firstly, by the discussion above, we have

E ≤ |A|u+
∑

0<|x|≤u

A ∗ A(x)I ∗ I(x)

≤ |A|u+ u2.

Secondly, by Parseval’s identity, we have

E =
1

N + u

∑
r

|Â(r)|2|Î(r)|2

≥ |A|2u2

N + u
,
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where the hat symbol denotes Fourier transform in ZN+u. Comparing these
upper and lower bounds for E, and putting u = bN3/4c, gives the result. �

An interesting feature of the argument is that we only used the fact that
A ∗ A(x) ≤ 1 for 0 < |x| ≤ N3/4, which seems to be a much weaker state-
ment than saying that A is B2. Somehow this fact is the major barrier to
improving the error term in (1).

We now move on to B4-sets. Let A ⊆ {1, . . . , N} be a B4-set.

Lemma 2 For all x ∈ Z we have

A ∗ A ∗ A ∗ A(x) ≤ 4 (1 + |A|(A ∗ A)(x)) .

P r o o f. Fix x. The quantity A ∗ A ∗ A ∗ A(x) counts the number of
quadruples (a1, a2, b1, b2) ∈ A4 with

(10) a1 + a2 − b1 − b2 = x.

If there are no solutions to this equation then the lemma is immediate.

We show first that if there is a solution to (10) in which ai 6= bj for all i, j
then (10) has at most 4 solutions. Indeed fix such a solution (a1, a2, b1, b2)
and suppose that (a′1, a

′
2, b
′
1, b
′
2) is another solution. Then

a1 + a2 + b′1 + b′2 = a′1 + a′2 + b1 + b2.

But A is B4, so the quadruples (a1, a2, b
′
1, b
′
2) and (a′1, a

′
2, b1, b2) are the same

up to a reordering. It follows that {a′1, a′2} = {a1, a2} and {b′1, b′2} = {b1, b2},
giving at most 4 possibilities.

If there is no solution of the kind discussed here then all solutions have
a1 = b1, a1 = b2, a2 = b1 or a2 = b2. It is clear that, for each of these
possibilities, (10) has |A|(A ∗ A)(x) solutions. Adding together everything
above gives the result of the lemma. �

We remark that the important feature of the above bound is the number 4.
On average, A ∗ A(x) will be tiny.

Once again we embed the problem into a cyclic group where we can take
finite Fourier transforms. Let v ≤ N be a parameter to be chosen later, and
regard A as a subset of Z2N+v in the obvious way. Since A+A ⊆ [1, . . . , 2N ],
the modular version of A ∗A ∗A ∗A will satisfy the bound of Lemma 2 for
|x| ≤ v. That is to say,

(11) A ∗ A ∗ A ∗ A(x) ≤ 4 (1 + |A|(A ∗ A)(x))
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for |x| ≤ v, where everything in sight lives in Z2N+v. Let I = [1, . . . , u] (as
a subset of Z2N+v), where u ≤ v is another parameter to be chosen later.
It will turn out that u needs to be significantly smaller than v. For the
remainder of this section the hat symbol refers to Fourier transforms on
Z2N+v. Using (11) we have the following key computation.

1

2N + v

∑
r

|Â(r)|4|Î(r)|2 =
∑
x

(A ∗ A ∗ A ∗ A)(x)(I ∗ I)(x)

≤ 4u2 + 4|A|
∑
x

(A ∗ A)(x)(I ∗ I)(x)

= 4u2 +
4|A|

2N + v

∑
r

|Â(r)|2|Î(r)|2

≤ 4u2 +
4|A|

2N + v
|A|2

∑
r

|Î(r)|2

= 4u2 +
4|A|

2N + v
|A|2(2N + v)u

≤ 4u2 +
224N7/4u

2N + v
,(12)

where we have used the fact that v ≤ N and the trivial bound |A| ≤
100N1/4. The inequality (12) gives immediately that

(13) 8Nu2 + 4u2v + 224N7/4u ≥
∑
r

|Â(r)|4|Î(r)|2.

Using the trivial lower bound |A|4u2 for the right hand side of (13) together
with u = v = N7/8 gives the Lindström bound (6). However we are in a
position to make a further improvement. The set A is extremely irregularly
distributed in Z2N , being contained in {1, . . . , N}. This information allows
us to say something non-trivial about Â(r) when r is small and non-zero.
Much of our paper is concerned with exactly how much it is possible to
deduce from this observation as regards (13). However the reader who is
keen to see an improvement of (6) as quickly as possible may care to find a
positive constant c such that either |Â(±1)| ≥ c|A| or |Â(±2)| ≥ c|A|. Since
I is a rather small interval the coefficients Î(±1) and Î(±2) are as near to
|I| as makes no difference. Substituting into (13) and putting u = v = N7/8

gives a bound of form

|A| ≤ (8− 2c4)1/4N1/4(1 + o(1)).

5. A lower bound for the number of squares. Let f : {1, . . . , N} →
R be a function. Write |f | =

∑
x f(x) and suppose that |f | = N . Define
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the quantity M(f) by

M(f) =
∑
a,b,c,d

a+b=c+d

f(a)f(b)f(c)f(d) =
∑
x

(f ∗ f)(x)2 = f ∗ f ∗ f ∗ f(0).

Since it is quite standard to refer to a quadruple of integers (a, b, c, d) with
a + b = c + d as a square, we call M(f) the number of squares for f . Let
us now introduce Fourier analysis to the study of M(f). We can regard
f as a subset of Z2N in a natural way, by identifying {1, . . . , N} with the
“first half” of Z2N . Furthermore when we do this the modular convolution
f ∗ f(x) is precisely the same as the Z-version, since the Z-version of f ∗ f
is supported in an interval of length 2N . It follows that

(14) M(f) =
∑
x∈Z2N

f ∗ f(x)2 =
1

2N

∑
r∈Z2N

|f̂(r)|4.

We shall be concerned with the following problem.

Problem 3 How small can M(f) be, if |f | = N?

The reader who has looked at Section 4 will realise, in view of (14), the
pertinence of this problem to the issue of upper bounds for B4-sets.

To get a feel for Problem 3 we prove a few easy results.

Lemma 4 We have M(f) ≥ N3/2 for all f .

P r o o f. Observe that
∑

x f ∗ f(x) = N2 and that f ∗ f(x) = 0 for
x /∈ {−N + 1, . . . , N − 1}. The result is now immediate from the Cauchy-
Schwarz inequality. Alternatively, the result is trivial from (14). �

Lemma 5 We can have M(f) ≤ 2N3/3 +O(N).

P r o o f. Take f to be the characteristic function of {1, . . . , N}. �

Exactly as in Section 4 we realise, on closer examination of the second
argument in Lemma 4, that a lot of information has been thrown away. We
have not considered any of the non-zero Fourier coefficents f̂(r) (r 6= 0).
Furthermore, since f is extremely irregularly distributed (being contained
in {1, . . . , N}, which only fills half of Z2N) we have every right to expect that
the contribution from these coefficients will be significant. In fact, because
of the way that f is distributed, we expect the non-zero Fourier coefficients
f̂(r) with |r| very small to make a significant contribution. Our objective
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now is to obtain a strong quantitative result from this observation.

Let f : {1, . . . , N} → R be a function. Let v be a positive integer (which
will be assigned various values later on) and regard f as a function on Z2N+v

in the natural way. In the following we will use the hat symbol (̂ ) to denote
Fourier transforms on Z2N+v. Exactly as in (14) we have

(15) M(f) =
1

2N + v

∑
r

|f̂(r)|4.

The reason for introducing v will be clear to the reader who has studied §4.

Define
E(X) =

∑
0<|r|≤X

|f̂(r)|4.

We can now state the main theorem of this section. In this theorem (and
for the remainder of the section) the tilde symbol (̃ ) denotes the Fourier
transform on R. In other words if F ∈ L1[0, 1] then we write, for λ ∈ R,

F̃ (λ) =

∫ ∞
−∞

F (x)eixλ dx.

Theorem 6 Let f : {1, . . . , N} → R be a function with |f | = N , and let
v,X be positive integers. Let f be regarded as a function on Z2N+v in the
natural way, and let the hat symbol denote Fourier transforms on that group.
Let p ∈ C1[0, 1] be such that ∫ 1

0

p(x) dx = 2.

Then there is a constant C, depending only on p, such that

E(X) ≥ γ(p)N4

(
1− C

(
v

N
+

N2

v2X
+
X2

N

))
,

where

γ(p) = 2

(∑
r≥1

|p̃(πr)|4/3
)−3

.

P r o o f. We remark that, for suitable choices of v and X, the dominant
term in the above bound will be γ(p)N4. Throughout this proof C will
denote a constant which depends only on the fixed function p. We follow
the traditional convention in analytic number theory of allowing the same
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letter C to denote different constants!

For x ∈ [0, 2] define

(16) U(x) =

{
1 (0 ≤ x < 1)
1− p(x− 1) (1 ≤ x < 2),

and set, for x ∈ Z2N+v,

(17) G(x) = U

(
x

N + v
2

)
.

Let I be the characteristic function of the interval {1, . . . , v
4
} and write

(18) H(x) =

(
4

v

)2

G ∗ (I ∗ I)(x).

The idea here is that G is a discretised version of U , and H is a smoothed
version of G. Observe that G is equal to 1 for x = 1, . . . , N+ v

2
, and that I∗I

is supported in {−v/4, v/4}. Therefore H is equal to 1 for x = v
4
, . . . , N+ v

4
.

It follows that ∑
x

f(x)H
(
x+

v

4

)
= N.

Applying Parseval’s identity and the triangle inequality gives

(19)
∑
r

|f̂(r)||Ĥ(r)| ≥ 2N2.

In order to use this we require a variety of estimates for Ĥ(r). These will
be of two forms. The first estimate says that, when |r| is small, Ĥ(r) can
be estimated by approximating the sum

Ĥ(r) =
∑
x

H(x)ωrx

by an integral. Observe that here we are using ω to denote the quantity

e
2πi

2N+v , because we are working with the group Z2N+v. The second estimate
tells us that Ĥ(r) is small when |r| is at all large. It is for the purpose
of proving such a result that we are using the smoothed function H rather
than G.

Lemma 7 Let r : [0, 1] → R be piecewise continuously differentiable, and
let M be an integer. Then∣∣∣∣∣

∫ 1

0

r(x) dx − 1

M

∑
0≤n<M

r
( n
M

)∣∣∣∣∣ ≤ ‖r′‖∞M
.
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P r o o f. This is just an easy application of the Fundamental Theorem of
Calculus. �

Observe that

(20) |Ĥ(r)| =

(
4

v

)2

|Ĝ(r)||Î(r)|2.

It follows that |Ĥ(r)| ≤ |Ĝ(r)| for all r. Furthermore when r 6= 0 we have

|Ĝ(r)| =

∣∣∣∣∣∣
∑

0≤x<N+ v
2

p

(
x

N + v
2

)
ωrx

∣∣∣∣∣∣ .
Hence, using this and Lemma 7 with r(x) = p(x)eπirx and M = N + v

2
gives

us what we called our first estimate.

Lemma 8 Let 0 < |r| < N + v
2
. Then we have the inequality

|Ĥ(r)| ≤ |Ĝ(r)| ≤ (N + v)|p̃(πr)|+ C|r|.

P r o o f. Indeed we can take C = 4 (‖p′‖∞ + ‖p‖∞). �

It is possible to prove by very similar means that

(21) |Ĥ(0)| ≤ C.

We now turn our attentions to estimating |Ĥ(r)| for large |r|. To this end
recall (20). It follows immediately from Lemma 8 that there is a constant
C such that

(22) |Ĝ(r)| ≤ CN

for all |r| ≤ N + v
2
. We shall also require an upper bound for |Î(r)|.

Lemma 9 Let 0 < |r| ≤ N + v
2
. Then

|Î(r)| ≤ 3N

|r|
.

P r o o f. By summing a geometric progression it is easy to see that

|Î(r)| ≤ 2

|ωr − 1|

=

(
sin

(
πr

2N + v

))−1
.
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It is also a simple matter to verify, for θ ∈ [−π/2, π/2], the inequality

| sin θ|−1 ≤ |θ|−1 + 1.

The lemma follows immediately. �

Lemma 10 There is a constant C such that

|Ĥ(r)| ≤ CN3

v2|r|2
.

P r o o f. This follows quickly from (20), (22) and the previous lemma. �

Using Lemma 10 and the fact that |f | = N , we get that∑
|r|>X

|f̂(r)||Ĥ(r)| ≤ CN4

v2X
.

Using this and (21) it follows from (19) that∑
0<|r|≤X

|f̂(r)||Ĥ(r)| ≥ 2N2

(
1− C

(
1

N
+

N2

v2X

))
.

Bringing Lemma 8 to bear on this gives, after a little calculation,

(23)
∑

0<|r|≤X

|f̂(r)||p̃(πr)| ≥ 2N

(
1− C

(
v

N
+

N2

v2X
+
X2

N

))
.

Since both f and p are real-valued we have that |f̂(r)| = |f̂(−r)| and
|p̃(πr)| = |p̃(−πr)| for all r. Therefore (23) implies that

(24)
∑

1≤r≤X

|f̂(r)||p̃(πr)| ≥ N

(
1− C

(
v

N
+

N2

v2X
+
X2

N

))
.

The proof of Theorem 6 can now be concluded by a single application of
Hölder’s Inequality with exponents (4, 4/3). �

Apart from the problem of choosing a suitable function p, we can use The-
orem 6 to get a lower bound for M(f).

Theorem 11 Let f : {1, . . . , N} → R be a function with |f | = N . Let
p ∈ C1[0, 1] be such that ∫ 1

0

p(x) dx = 2.
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Then

M(f) ≥
(

1 + γ(p)

2

)
N3(1 +O(N−1/7)),

where

γ(p) = 2

(∑
r≥1

|p̃(πr)|4/3
)−3

.

P r o o f. Recall (15). Using this and Theorem 6 with v = N6/7, X = N3/7

gives the result. �

It only remains to choose a good function p, where “good” means that∫ 1

0
p(x) dx equals 2 and γ(p) is as large as possible. Unfortunately we have

not been able to give a best possible choice in closed form. A simple function
that gives a good bound is

(25) p(x) = 5
2
− 40

(
x− 1

2

)4
.

One can compute that

(26) |p̃(πr)| =


40

π2|r|2
− 960

π4|r|4
r even, r 6= 0

240

π3|r|3
− 1920

π5|r|5
r odd,

and then that

(27) γ(p) =
2
(
π2

40

)4
(
S1 +

(
6
π

)4/3
S2

)3 ,
where

(28) S1 =
∑
reven
r≥0

∣∣∣∣ 1

r2
− 24

π2r4

∣∣∣∣4/3

and

(29) S2 =
∑
rodd
r≥0

∣∣∣∣ 1

r3
− 8

π2r5

∣∣∣∣4/3 .
There seems to be little hope of an analytic expression for these series, but
one can compute that S1 ≈ 0.0839757, S2 ≈ 0.1219299. It then follows from
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(27) that γ(p) > 1/7 (in fact it turns out that γ(p) ≈ 1/6.9994).

To conclude this section we restate Theorems 6 and 11 with this particular
choice of p.

Theorem 12 Let f : {1, . . . , N} → R be a function with |f | = N , and
let v,X be positive integers. Let f be regarded as a function on Z2N+v in
the natural way, and let the hat symbol denote Fourier transforms on that
group. Write

E(X) =
∑

0<|r|<X

|f̂(r)|4.

Then there is an absolute constant C such that

E(X) ≥ 1
7
N4

(
1− C

(
v

N
+

N2

v2X
+
X2

N

))
.

Theorem 13 Let f : {1, . . . , N} → R be a function with |f | = N . Then
we have

M(f) ≥ 4
7
N3

for all sufficiently large N .

6. A return to B4 sets. Recall that our knowledge of B4 sets is
currently encapsulated in (13), which we urge the reader to reconsider now.
In the remarks following that equation we stated that our goal would be
to say something about the Fourier coefficients Â(r) with r non-zero and
small. We now have this knowledge, in the form of Theorem 12.

In (13) we must contend with the presence of |Î(r)|2. Notice, however, that
|Î(r)| will differ insignificantly from u if |r| � N/u. Indeed

Lemma 14

|Î(r)| ≥ u− π|r|u2

N
.

P r o o f. Let ω = e2πi/(2N+v). Then we have∣∣∣u− Î(r)
∣∣∣ ≤ u∑

x=1

|1− ωrx| ≤ 2π|r|u2

2N + v
≤ π|r|u2

N
,

which is all we need. �
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Applying Theorem 12 with f(x) = NA(x)/|A| gives∑
r

|Â(r)|4|Î(r)|2 ≥
∑
|r|≤X

|Â(r)|4|Î(r)|2

≥ 8
7
u2|A|4

(
1− C

(
v

N
+

N2

v2X
+
X2

N

))(
1− πXu

N

)2

,

where C is an absolute constant. From (13) we now have

(30) 8N +224

(
v +

N7/4

u

)
≥ 8

7
|A|4

(
1− C

(
v

N
+

N2

v2X
+
X2

N
+
Xu

N

))
.

We must now choose suitable values for u, v and X, recalling that we require
u ≤ v. There are many such choices and one is u = N13/17, v = N16/17,
X = N3/17. With these values in (30) we get

Theorem 15
A(4, N) ≤ 71/4N1/4(1 + o(1)).

We now turn our attention to B3-sets. We shall be very brief here as there
very little difference between this and the case of B4-sets.

Lemma 16 Let A ⊆ {1, . . . , N} be a B3-set. Then

A ∗ A ∗ A ∗ A(x) ≤ 2|A|(1 + (A ∗ A)(x)).

P r o o f. A counting argument very similar to that in Lemma 2 gives

A ∗ A ∗ A(x) ≤ 2(1 + |A|A(x)).

Using the fact that

A ∗ A ∗ A ∗ A(x) =
∑
y

(A ∗ A ∗ A)(y)A(y − x),

the lemma follows immediately. �

The remainder of the derivation is almost exactly as before. One winds up
with

Theorem 17
A(3, N) ≤

(
7
2

)1/3
N1/3(1 + o(1)).
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7. Large values of h. In this section we again consider upper bounds
for Bh-sets. Our aim is to convince the reader that the methods we have
just been using for B3 and B4 sets generalise rather easily to the case h ≥ 5.
For any given value of h ≥ 5, the difficulties we have experienced optimising
our approach (i.e. choosing a good function p) are even more apparent.
Therefore we shall not, in the sequel, discuss any such specific value of h.
Rather we shall turn our attention to the behaviour of our methods as h
becomes large. It turns out that rather simple ideas constitute essentially
the best possible application of the methods of this paper.

Let f : G→ R be a function on an abelian group G. Then throughout this
section we will write f ∗k for the k-fold convolution of f with itself.

The following proposition, a sort of generalisation of Theorem 12, will be
our main tool. This comes as little surprise.

Proposition 18 Let k be a positive integer. Let f : {1, . . . , N} → R+ be
a function, and regard f as a function on ZkN+v in the natural way. Here
k is to be regarded as fixed (but large), and N, v are positive integers with
v � N . Then we have

(31)
∑
|r|≤k/2

|f̂(r)|2k ≥ 1√
π
k1/2(1− ε(k))|f |2k,

where ε(k)→ 0 as k →∞.

P r o o f. The idea is rather simple, but (as the form of (31) might suggest)
some fairly careful analysis is required. Throughout the following k will be
taken sufficiently large. We have

|f̂(r)| =

∣∣∣∣∣∑
x

f(x)ωr(x−
N
2 )

∣∣∣∣∣
≥

∑
x

f(x) cos

(
2πr

(
x− N

2

)
kN + v

)
.

Therefore if |r| ≤ k/2 we have

|f̂(r)| ≥ |f | cos
(πr
k

)
.
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Now we simply compute

|f |−2k
∑
|r|≤k/2

|f̂(r)|2k ≥
∑
|r|≤k/2

∣∣∣cos
πr

k

∣∣∣2k
≥

∑
|r|≤k5/8

∣∣∣∣1− π2r2

2k2

∣∣∣∣2k

≥
∣∣∣∣1− 25

k3/2

∣∣∣∣2k ∑
|r|≤k5/8

e−π
2r2/k.

In this last step we have used the inequality

1− x ≥ e−x(1− x2),

which holds for x ≤ 1. Now one observes that∣∣∣∣1− 25

k3/2

∣∣∣∣2k −→ 1

as k →∞, and that

1√
k

∑
|r|≤k5/8

e−π
2r2/k −→

∫ ∞
−∞

e−π
2x2 dx =

1√
π
.

The proposition now follows. The conscientious reader may care to check
that we can even take ε(k) = 100k−1/8. �

Interestingly the above is essentially best possible. We take the opportunity
to sketch a proof of this fact now.

Proposition 19 The bound of Proposition 18 is best possible in that the
constant 1/

√
π cannot be increased.

S k e t c h P r o o f. Let δ > 0 and let χ be the characteristic function
of the set Aδ, which consists of the integers n ∈ {−N/2, . . . , N/2} with
|n| ≥ (1 − δ)N/2. Let f(n) = δ−1χ(n), so that |f | = N(1 + o(1)). For
x ∈ [−1/2, 1/2] define

g(x) =

{
δ−1 (|x| ≥ (1− δ)/2)
0 (otherwise)

Now g is the probability density function of a random variable X with mean
0 and variance

(32) σ2 =
1− (1− δ)3

12δ
> 1

4
(1− δ).
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Let {Xi}∞i=1 be a sequence of independent identically distributed random
variables with density g. Then, by a suitable version of the Central Limit
Theorem (see [7]), the density function of

X1 + · · ·+Xm

σ
√
m

tends to the standard normal 1√
2π
e−x

2/2 uniformly in x. In other words,

√
m · g∗m(xσ

√
m) −→ 1

σ
√

2π
e−x

2/2

uniformly in x. In particular for m ≥ m(δ) we have, using (32), that

(33) g∗m(0) ≤

√
2

mπ(1− δ)
.

Now let k be a fixed positive integer, and regard f as a function on ZkN in
the natural way (in Proposition 18 we worked with ZkN+v, but we choose
to ignore this technicality here). Using the hat symbol to denote Fourier
transforms on this group, we have∑

r

|f̂(r)|2k = kN
∑
x

|f ∗k(x)|2

= kN |f ∗2k(0)|.(34)

Note that the modular version of |f ∗2k(0)| is the same as the Z-version
because f is supported in {−N/2, N/2}. It is thus not hard to see that, as
N →∞, we have

f ∗2k(0)

N2k−1 −→ g∗2k(0).

It follows from (34) that

|f |−2k
∑
r

|f̂(r)|2k −→ kg∗2k(0),

again as N → ∞. If 2k ≥ m(δ) (as defined earlier) then this implies, by
(33), that

|f |−2k
∑
r

|f̂(r)|2k ≤

√
k

π(1− 2δ)

for N sufficiently large. Since δ can be chosen arbitrarily small, the propo-
sition follows. �
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We turn now to the business of actually using Proposition 18 to get infor-
mation about Bh sets. We shall be extremely brief, as almost all of the
relevant ideas have been covered in §4 (which it may help to recall at this
point). First of all we require generalisations of Lemmas 2 and 16.

Lemma 20 Let h = 2k be a positive even integer, and let A ⊆ {1, . . . , N}
be a Bh-set. Then, for any x ∈ Z, we have that

A∗2k(x) ≤ (k!)2 + k2|A|A∗(2k−2)(x).

Lemma 21 Let h = 2k−1 be a positive odd integer, and let A ⊆ {1, . . . , N}
be a Bh-set. Then, for any x ∈ Z, we have that

A∗2k(x) ≤ |A|
(
k!(k − 1)! + k(k − 1)A∗(2k−2)(x)

)
.

Regard A as a subset of ZkN+v, and let I be the characteristic function
of {1, . . . , u} where u � v � N . In the case h = 2k, an appropriate
generalisation of (13) (which may be proved in exactly the same way) is

k(k!)2Nu2 + (2k + 4)!
(
N2−1/2ku+ u2v

)
≥
∑
r

|Â(r)|2k|Î(r)|2.

Applying Proposition 18 and Lemma 14 quickly gives

k(k!)2N + (2k + 4)!

(
N2−1/2k

u
+ v

)
≥ 1√

π
k1/2(1− ε(k))|A|2k

(
1− πku

N

)2

,

where here (and in the following) ε(k)→ 0 as k →∞. Taking u = N1−1/3k

and v = N1−1/4k gives the following improvement of (7).

Theorem 22

α(2k) ≤
(
π1/2k1/2(k!)2(1 + ε(k))

)1/2k
.

The case h = 2k − 1 may be treated similarly and one winds up with

Theorem 23

α(2k − 1) ≤
(
π1/2k−1/2(k!)2(1 + ε(k))

)1/(2k−1)
.
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8. New bounds for B2[g]-sets part I. In this section we apply the
results of §5 to the problem of bounding α(2, g) above. We show that our
ideas lead to a non-trivial bound which is stronger than that of [3] for
g ≤ 68. Let A ⊆ {1, . . . , N} be a B2[g]-set. Let 0 < v ≤ N be an integer
to be chosen later, and regard A as a subset of Z2N+v in the obvious way.
Then we have

(35) M(A) =
∑
x

(A ∗ A◦)(x)2 ≤ 2g
∑
x

(A ∗ A◦)(x) = 2g|A|2.

On the other hand, using the hat symbol to denote Fourier transforms in
Z2N+v, we have

(36) (2N + v)M(A) =
∑
r

|Â(r)|4.

Now let X be another positive integer to be chosen later, and split the sum
in (36) into the two parts

Σ1 =
∑
|r|≤X

|Â(r)|4

and
Σ2 =

∑
X<|r|≤N+ v

2

|Â(r)|4.

Applying Proposition 12 with f(x) = NA(x)/|A| gives

(37) Σ1 ≥ 8
7
|A|4

(
1− C

N

(
v +

N3

v2X
+X2

))
.

Furthermore by the Cauchy-Schwarz inequality, Parseval’s identity and the
trivial bound |A| ≤ (4g)1/2N1/2 we have

Σ2 ≥
1

2N + v

 ∑
X<|r|≤N+ v

2

|Â(r)|2
2

≥ 1

2N + v

(
(2N + v)|A| − 2X|A|2

)2
≥ (2N + v) (|A| − 12gX)2 .(38)

Taking X = N3/7, v = N6/7 in the above and doing a little calculation with
(35), (36), (37) and (38) gives the following result.
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Theorem 24 We have

α(2, g) ≤
√

7
2
g − 7

4
.

This improves on the bound of [3] for g ≤ 68, and in particular

α(2, 2) ≤ 1
2

√
21.

9. New Bounds for B2[g]-sets part II. In this section we discuss the
paper [3]. We begin by translating the techniques of that paper into the
language we have been using here, a relatively easy task. We then show
that our methods complement those of [3], in the sense that we can get an
improved bound on A(2, g, N). We shall in fact prove the following result.

Theorem 25

A(2, g, N) ≤
(
17
5

)1/2
g1/2N1/2(1 + o(1)).

Observe that (17/5)1/2 = 1.84391.. (in fact our method gives the slightly
better constant 1.84385). This is weaker than the bound of Theorem 24 for
g ≤ 18, but stronger than the bound of [3] for all g. We give this bound
more as an illustration of the sort of techniques that might be useful in this
problem rather than for the constant 17/5 itself.

We now translate the technique used in [3] to obtain the bound (4) into the
language of our paper. Let A ⊆ {1, . . . , N} be a B2[g] set, and regard A as
a subset of Z2N . Define f(x) = 2g − (A ∗A◦)(x), so that 0 ≤ f(x) ≤ 2g for
all x ∈ Z2N . For any r 6= 0 the Fourier transform f̂(r) is simply −Â(r)2.
Hence we have, if ω = e2πi/2N ,

|Â(r)|2 =

∣∣∣∣∣∑
x

(2g − (A ∗ A◦)(x))ωrx

∣∣∣∣∣
≤

∑
x

|2g − (A ∗ A◦)(x)|

= 4Ng − |A|2.(39)

Noting that A ⊆ {1, . . . , N}, Cilleruelo, Ruzsa and Trujillo show that A
must have a large non-zero Fourier coefficient Â(r). The technique used
to do this bears some resemblance to the techniques we used earlier to
show that, under the same hypotheses,

∑
r 6=0 |Â(r)|4 cannot be too small.

One finds a non-negative function f , supported on {1, . . . , N}, for which∑
r 6=0 |f̂(r)| is large compared to |f |. Observing that∑

x

A(x)f(x+N) = 0,
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one uses Parseval’s identity to conclude that∑
r 6=0

|Â(r)||f̂(r)| ≥ |A||f |,

from which it follows that

sup
r 6=0
|Â(r)| ·

∑
r 6=0

|f̂(r)| ≥ |A||f |.

We suppress a more detailed discussion, referring the interested reader to
[3].

For the rest of the paper define

N∞(A) =
1

|A|
sup
r 6=0
|Â(r)|

and

N4(A) =
1

|A|4
∑
r 6=0

|Â(r)|4.

The situation may be summarised by saying that [3] obtains information
from N∞(A), whereas we profited from consideration of N4(A). Since these
are rather different objects, it is not altogether surprising that a stronger
bound can be achieved by playing the two approaches off against one an-
other. The remainder of the paper, which aims to show that this is indeed
so, consists of three parts. In Step 1 we show that a lower bound on N∞(A)
can be used slightly more effectively than was done in (39). In Step 2 we
show how a lower bound on N4(A) gives information in a rather simpler
(but slightly weaker) way than in §8. This keeps the whole argument man-
ageable. Finally, in Step 3, we show that considering N∞(A) and N4(A)
together gives stronger information, for large g, than separate consideration
of either N∞(A) (cf. [3]) or N4(A) (cf. §8).

Step 1. Let us reconsider the derivation (39). There was only one in-
equality, but it was rather crude. Our task here is to improve it.

Lemma 26 Let L,M,R be integers with L+ 1 ≤M/R. Let C(M,R) be the
set of all functions f : ZL → {0, 1, 2, . . . } with |f | = M and f(x) ≤ R for
all x. Then, for all f ∈ C(M,R),

|f̂(1)| ≤ R

∣∣∣∣∣sin π
L

(
M
R

+ 1
)

sin π
L

∣∣∣∣∣ .
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P r o o f. The result clearly generalises to |f̂(r)| with r 6= 0. It is saying
nothing more than that |f̂(1)| is maximised, among all functions in C(M,R),
when f is as concentrated as possible. We prove this using a sort of com-
pression argument. Let f be a member of C(M,R) with |f̂(1)| maximal. Let
u, v ∈ ZL be such that f(u) > 0 and f(v) < M , and define a new function
gu,v ∈ C(M,R) by

g(x) = f(x) (x 6= u, v)
g(u) = f(u)− 1
g(v) = f(v) + 1.

Let ω = e2πi/L and suppose that a ∈ [0, L) is such that f̂(1) = |f̂(1)|ωra
(a need not be an integer). Then one can check that

|ĝ(1)| =
∣∣∣|f̂(1)|+ ωv−a − ωu−a

∣∣∣
≥ |f̂(1)|+ cos

(
2π(v − a)

L

)
− cos

(
2π(u− a)

L

)
.

In words, |ĝ(1)| is greater than |f̂(1)| if |v − a| < |u − a|, where distance
is measured on the torus [0, L) which contains ZL as a subgroup. By the
extremal property of f , this means that we cannot select u and v with
|v−a| < |u−a|, f(u) > 0 and f(v) < M . In other words f is as concentrated
about a as possible. �

We can now use this lemma in place of the inequality (39), with f(x) =
2g − (A ∗ A◦)(x), L = 2N and M = 2g. One gets for any r 6= 0 that

|Â(r)|2 ≤ 2g

∣∣∣∣∣∣
sin π

2N

(
4Ng−|A|2

2g
+ 1
)

sin π/2N

∣∣∣∣∣∣ .
Writing (here and for the rest of the paper)

Q =
|A|2

4Ng
,

this simplifies to

|Â(r)|2 ≤ 2g

∣∣∣∣∣sin
(
πQ− π

2N

)
sin(π/2N)

∣∣∣∣∣ .
Recalling that Q < 1 uniformly in N (a consequence of Theorem 24) this
reduces yet further to give

|Â(r)|2 ≤ 4gN sinπQ

π
(1 + o(1)).
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Finally this implies our strengthened version of (39), namely

(40)
sin πQ

πQ
≥ N∞(A)2(1 + o(1)).

Step 2. In this brief section we show that upper bounds for B2[g] sets are
related to lower bounds for N4(A) =

∑
r 6=0 |Â(r)|4/|A|4 in a very simple way

(which is a little weaker than the approach taken in §8). Let A ⊆ {1, . . . , N}
be a B2[g] set and regard A as a subset of Z2N . Then

|A|4(1 +N4(A)) =
∑
r

|Â(r)|4

= 2N
∑
x

(A ∗ A◦)(x)2

≤ 4Ng
∑
x

(A ∗ A◦)(x)

=
|A|4

Q
.

Hence

(41) Q ≤ 1

1 +N4(A)
.

Step 3. Unfortunately this section is a touch computational. We trust
the reader will accept our apologies for this. At this point we take the
opportunity to recall equation (24), from which we deduced Theorem 6
by a simple application of Hölder’s Inequality. Let f : {1, . . . , N} → R
be a function with |f | = N , and regard f as a function on Z2N+v. Let

p : [0, 1]→ R be a continuously differentiable function with
∫ 1

0
p(x) dx = 2.

Then, using the hat and tilde symbols to denote Fourier transforms on Z2N+v

and R respectively, we had

(42)
∑

1≤r≤X

|f̂(r)||p̃(πr)| ≥ N

(
1− C

(
v

N
+

N2

v2X
+
X2

N

))
.

Take f(x) = NA(x)/|A| and p(x) = 5
2
− 40

(
x− 1

2

)4
(as we did in proving

Theorem 6). With X = N3/7 and v = N6/7, (42) gives

(43)
∑

1≤r<N

|Â(r)||p̃(πr)| ≥ |A|(1 + o(1)).
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Suppose that |Â(1)| = α|A|. Then, recalling (26), we get that

(44)
∑

2≤r<N

|Â(r)||p̃(πr)| ≥ |A|
(

1− α
(

240

π3
− 1920

π5

))
(1 + o(1)).

Suppose that α < 7
10

, so that

1− α
(

240

π3
− 1920

π5

)
≥ 0.

Then we may apply Hölder’s Inequality to (44) to obtain, after a few calcu-
lations, that

N4(A) ≥

2α4 +
2
(
π3

240

)4 (
1− α

(
240
π3 − 1920

π5

))4((
π
6

)4/3
S1 + S2 −

(
1− 8

π2

)4/3)3
 (1 + o(1))(45)

≈
(
2α4 + 4.8607836 (1− 1.4662621α)4

)
(1 + o(1)),(46)

where S1 and S2 are the sums appearing in (28) and (29). Call the poly-
nomial appearing in (46) p(α). Then one can check that p′(α) < 0 for
α ∈ [0, 0.47]. Hence, putting α = 0.4124078 in (46), we get that either

(47) N∞(A) ≥ |Â(1)|
|A|

≥ 0.4124078

or else

(48) N4(A) ≥ 0.1765468 (1 + o(1)).

If (48) holds then, by (41), we have

Q ≤ 0.8499448 (1 + o(1)).

If (47) holds then, by (40) and a little easy computation we have again that

Q ≤ 0.8499448 (1 + o(1)).

Either way, it is easy to see (recalling that Q = |A|2/4Ng) that Theorem
25 is true. �

10. Concluding remarks on Bh[g] sets. In this paper we have been
concerned only with the problem of finding upper bounds for Bh[g]-subsets
of {1, . . . , N}. However the notion of Bh[g]-set makes sense on any subset
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of an abelian group and perhaps the most natural questions concern Bh[g]-
subsets of ZN . Indeed one feels that in passing from ZN to {1, . . . , N}
one has somehow only introduced “boundary effects” that should have little
bearing on the apparently deeper underlying arithmetic questions. Our work
in this paper has been concerned with improving the estimates for these
boundary effects, and unfortunately our methods are unable to give any
new information about Bh[g]-subsets of ZN . Let M(h, g,N) denote the size
of the largest Bh[g]-subset of ZN . Clearly then M(h, g,N) ≤ A(h, g,N). So
far as I am aware, the best known upper bounds on M(h,N) = M(h, 1, N)
come from simple applications of Lemmas 20 and 21 (which, as one can
easily check, hold equally well in the modular case). That is to say, one has

M(2k,N) ≤ (k!)1/kN1/2k(1 + o(1))

and
M(2k − 1, N) ≤ (k!(k − 1)!)1/(2k−1)N1/(2k−1)(1 + o(1)).

In my opinion any significant lowering of these bounds would require a
substantial advance in our understanding of these additive representation
questions.

For higher values of g it seems that essentially no non-trivial upper bounds
are known in the modular case. For B2[g] sets one could adapt the argument
of §8 to get the bound

M(2, g, N) ≤ (2g − 1)1/2N1/2(1 + o(1)),

a slight improvement on the trivial bound. Non-trivial lower bounds can be
obtained, but it should be noted that the results in [3] do not apply to the
modular case. All these questions are very interesting.

11. Further remarks on functions with minimal M(f). In this
section, which is really an appendix, we offer a miscellany of further results
concerning Problem 3. Although these results are not necessary for an
understanding of the rest of the paper they do throw a little light on some
of the methods we have been using.

We start by showing that the upper bound of Lemma 5 is not tight, even if
we restrict attention to functions taking only two values.

Lemma 27 There is an f : {1, . . . , N} → {0, 1} with |f | = N and M(f) ≤
0.64074N3 +O(N2).
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P r o o f. Let Aα be the set obtained by removing an interval of length
αN from the middle of {1, . . . , N}. Let fα be the characteristic function
of Aα, weighted by a factor (1 − α)−1 so that |fα| = N . A slightly tedious
computation enables one to show that for α < 1/3 we have

M(fα) =
2
3
− 3α + 6α2 − 5α3

(1− α)4
N3 +O(N2).

It is straightforward to check that the minimum in [0, 1/3] occurs at α ≈
0.13257. �

We now turn to a study of the extremal functions in Problem 3. Letting S
denote the set of all f : {1, . . . , N} → R with |f | = N , an easy compactness
argument shows that there is a function F ∈ S such that M(f) ≥ M(F )
for all f ∈ S. We write M(F ) = M0.

Lemma 28 F ∗ F ∗ F is equal to M0/N on {1, . . . , N}.

P r o o f. Let g : {1, . . . , N} → R be any function with
∑

x g(x) = 0. Then
for any ε we must have M(F + εg) ≥M0. A small computation gives that

d

dε

∑
x

((F + εg) ∗ (F + εg)(x))2

∣∣∣∣∣
ε=0

= 4
∑
x

(F ∗ F )(x)(F ∗ g)(x)

= 4
∑
x

(F ∗ F ∗ F )(x)g(x).

This expression must equal 0, and simple linear algebra tells us that this is
the case precisely when F ∗F ∗F equal to some constant c(F ) on {1, . . . , N}.
It is easy to compute the value of c(F ) in terms of M0. Indeed

(49) M0 =
∑
x

(F ∗ F )(x)2 =
∑
x

(F ∗ F ∗ F )(x)F (x) = c(F )N.

Lemma 29 There is a unique extremal function in Problem 3.

P r o o f. For the proof of this lemma we let the hat symbol (ˆ) denote the
Fourier transform on Z. Thus for θ ∈ T = [0, 1] we set

f̂(θ) =
∑
x

f(x)e(xθ),

where e(t) = e2πit. With this notation it follows, using standard facts about
Fourier transforms, that

M(f) =

∫ 1

0

|f̂(θ)|4 dθ.
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Let f, g : {1, . . . , N} → R be two functions with |f | = |g| = N . We use the
inequality ∣∣∣∣a+ b

2

∣∣∣∣4 +

∣∣∣∣a− b2

∣∣∣∣4 ≤ |a|4 + |b|4

2
,

which is valid for all a, b ∈ C and follows immediately from the identity

|a+ b|4 + |a− b|4 + 6
(
|a|2 − |b|2

)2
+ 2

(
|ab|2 −<a2b2

)
= 8(|a|4 + |b|4).

Setting a = f̂(θ), b = ĝ(θ) and integrating over θ ∈ [0, 1] we get that

(50) M

(
f + g

2

)
≤ M(f) +M(g)

2
,

with strict inequality unless ‖f̂−ĝ‖4 = 0. Since f̂ and ĝ are both continuous
this implies that f̂ = ĝ, which in turn forces f = g identically. Suppose now
that M(f) = M(g) = M0. Then, as |(f + g)/2| = N , we must have equality
in (50). This proves the lemma. �

For the remainder of this section we will work in Z2N . As usual we shall
regard functions

f : {1, . . . , N} → R

as functions on Z2N , and the hat symbol will once again refer to the Fourier
transform on Z2N .

Lemma 30 Let G : {1, . . . , N} → R be a function with |G| = N . Let H2N

denote the set of all functions H : Z2N → R with |H| = 0 and H(x) = 1 for
x = 1, . . . , N (compare §5 ). Then we have

(51)

(∑
r 6=0

|Ĝ(r)|4
)(∑

r 6=0

|Ĥ(r)|4/3
)3

≥ 16N8

for all H ∈ H2N . Suppose that in addition G ∗ G ∗ G is constant on
{1, . . . , N}. Then equality can occur in (51).

S k e t c h P r o o f. The first part of the lemma (that is to say the inequality
(51)) can be derived in much the same way that we proved Theorem 6 in §5.
In fact, the argument is a great deal simpler because we have not introduced
any smoothing device here. For the second statement, we simply observe
that one can take

H(x) =
2NG ∗G ∗G(x)−N3

2M(G)−N3
.
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The convolutions are taken in Z2N , but one can check that the modular
convolution G ∗ G ∗ G is also constant on {1, . . . , N}. This concludes the
proof of the lemma. �

This lemma has a number of consequences. First of all it provides justifi-
cation for the approach we used in §5 to obtain a lower bound for M(f).
Secondly it allows us to prove

Corollary 31 Suppose G : {1, . . . , N} → R is a function with |G| = N
for which G ∗G ∗G is constant on {1, . . . , N}. Then G = F .

P r o o f. It follows easily from Lemma 30 that G is extremal for Problem
3, the problem of minimising M(G). Hence, by Lemma 29, G = F . �

To conclude we should like to remark that Problem 3 is closely related to
the problem of finding the best possible constants in what are known as
Inequalities of Nikol’sk̆ıi Type.
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